Epileptic EEG detection using neural networks and post-classification
نویسندگان
چکیده
Electroencephalogram (EEG) has established itself as an important means of identifying and analyzing epileptic seizure activity in humans. In most cases, identification of the epileptic EEG signal is done manually by skilled professionals, who are small in number. In this paper, we try to automate the detection process. We use wavelet transform for feature extraction and obtain statistical parameters from the decomposed wavelet coefficients. A feed-forward backpropagating artificial neural network (ANN) is used for the classification. We use genetic algorithm for choosing the training set and also implement a post-classification stage using harmonic weights to increase the accuracy. Average specificity of 99.19%, sensitivity of 91.29% and selectivity of 91.14% are obtained.
منابع مشابه
Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملThe Detection of Normal and Epileptic EEG Signals using ANN Methods with Matlab-based GUI
Epilepsy is common neurological disorder disease in the world. Electroencephalogram (EEG) can provide significant information about epileptic activity in human brain. Since detection of the epileptic activity requires analyzing of very length EEG recordings by an expert, researchers tend to improve automated diagnostic systems for epilepsy in recent years. In this work, we try to automate detec...
متن کاملPerformance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks
The electroencephalogram (EEG) signal plays an important role in the detection of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a timeconsuming analysis of the entire length of the EEG data by an expert. The aim of this work is compare the automatic detection of EEG patterns using Discrete wavelet...
متن کاملWavelet Domain Approximate Entropy-Based Epileptic Seizure Detection
The electroencephalogram (EEG) signal plays an important role in the detection of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a timeconsuming analysis of the entire length of the EEG data by an expert. The aim of this work is to develop a new method for automatic detection of EEG patterns using ...
متن کاملNeural Network Classification of Eeg Signals by Using Ar with Mle Preprocessing for Epileptic Seizure Detection
The purpose of the work described in this paper is to investigate the use of autoregressive (AR) model by using maximum likelihood estimation (MLE) also interpretation and performance of this method to extract classifiable features from human electroencephalogram (EEG) by using Artificial Neural Networks (ANNs). ANNs are evaluated for accuracy, specificity, and sensitivity on classification of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 91 2 شماره
صفحات -
تاریخ انتشار 2008